08 اردیبهشت 1403
فاضل شجاعي

فاضل شجاعی

مرتبه علمی: استادیار
نشانی: دانشکده علوم و فناوری نانو و زیستی - گروه شیمی
تحصیلات: دکترای تخصصی / شیمی
تلفن: 077
دانشکده: دانشکده علوم و فناوری نانو و زیستی

مشخصات پژوهش

عنوان A first-principles and machine-learning investigation on the electronic, photocatalytic, mechanical and heat conduction properties of nanoporous C5N monolayers
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Covalent Organic Framework, Density functional thoery, Machine learning, photocatalysis, water splitting
مجله Nanoscale
شناسه DOI /10.1039/D1NR06449E
پژوهشگران بحیرا مرتضوی (نفر اول) ، مسعود شاهرخی (نفر دوم) ، فاضل شجاعی (نفر سوم) ، Timon Rabczuk (نفر چهارم) ، Xiaoying Zhuang (نفر پنجم) ، Alexander V. Shapeev (نفر ششم به بعد)

چکیده

Carbon nitride nanomembranes are currently among the most appealing two-dimensional (2D) materials. As a nonstop endeavor in this field, a novel 2D fused aromatic nanoporous network with a C5N stoichiometry has been most recently synthesized. Inspired by this experimental advance and exciting physics of nanoporous carbon nitrides, herein we conduct extensive density functional theory calculations to explore the electronic, optical and photocatalytic properties of the C5N monolayer. In order to examine the dynamic stability and evaluate the mechanical and heat transport properties under ambient conditions, we employ state of the art methods on the basis of machine-learning interatomic potentials. The C5N monolayer is found to be a direct band gap semiconductor, with a band-gap of 2.63 eV according to the HSE06 method. The obtained results confirm the dynamic stability, remarkable tensile strengths over 10 GPa and a low lattice thermal conductivity of ∼9.5 W m−1 K−1 for the C5N monolayer at room temperature. The first absorption peak of the single-layer C5N along the in-plane polarization is predicted to appear in the visible range of light. With a combination of high carrier mobility, appropriate band edge positions and strong absorption of visible light, the C5N monolayer might be an appealing candidate for photocatalytic water splitting reactions. The presented results provide an extensive understanding concerning the critical physical properties of the C5N nanosheets and also highlight the robustness of machine-learning interatomic potentials in the exploration of complex physical behaviors.