27 آذر 1404
حجت قيمت گر

حجت قیمت گر

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی سیستم های هوشمند و علوم داده - گروه مهندسی برق
تحصیلات: دکترای تخصصی / مهندسی برق-مخابرات سیستم
تلفن: 09394959842
دانشکده: دانشکده مهندسی سیستم های هوشمند و علوم داده

مشخصات پژوهش

عنوان EEG quantization and entropy of multi-step transition probabilities for driver drowsiness detection via LSTM
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
electroencephalography (EEG), driver drowsiness detection, deep learning, Long Short-Term Memory (LSTM), entropy features
مجله COMPUTERS IN BIOLOGY AND MEDICINE
شناسه DOI https://doi.org/10.1016/j.compbiomed.2025.110758
پژوهشگران محمد صالح رایانی (نفر اول) ، حجت قیمت گر (نفر دوم) ، مجتبی منصوری نژاد (نفر سوم)

چکیده

Detecting driver drowsiness through electroencephalogram (EEG) poses challenges due to the complexity and variability of brain activity across different subjects. This study proposes a feature extraction pipeline combined with a Long Short-Term Memory (LSTM) network. EEG data from each electrode channel is normalized and quantized to discrete levels, with the probabilities of transitioning to other levels modeled using Hidden Markov Models (HMMs) of different orders. From HMM emission probabilities, Shannon, Renyi, Tsallis, and Min entropy are extracted, forming a feature set that captures temporal channel information. These features are input into an LSTM network to classify alert or drowsy states. Monopolar and bipolar EEG montages are also investigated. Experiments on balanced and unbalanced EEG datasets show higher performance compared to existing machine learning and state-of-the-art deep learning methods. Subject-wise 5-fold and leave-one-out cross-validation achieved 91.23% and 81.88% accuracy on the balanced dataset, and 91.38% and 80.58% accuracy on the unbalanced dataset. The LSTM saliency map identifies key EEG channels, time-step shifts, and quantization levels contributing to drowsiness detection. The feature extraction algorithm provides significant distinction between drowsy and alert classes, with transition Shannon entropy higher for the drowsy class. Reasons behind confidently correct and incorrect predictions and model criteria for detecting drowsiness are also explored. This work highlights the potential of using signal quantization with entropy of transition probabilities to extract meaningful features.