May 2, 2024
Mohsen Abbasi

Mohsen Abbasi

Academic Rank: Associate professor
Address:
Degree: Ph.D in Chemical Engineering
Phone: 07731221495
Faculty: Faculty of Petroleum, Gas and Petrochemical Engineering

Research

Title Syngas production in a novel methane dry reformer by utilizing of trireforming process for energy supplying: Modeling and simulation
Type Article
Keywords
Journal Journal of Natural Gas Science and Engineering
DOI
Researchers Mohsen Abbasi (Second researcher) ,

Abstract

In this study, tri-reforming process has been utilized as an energy source for driving highly endothermic process of methane dry reforming process in a multi-tubular recuperative thermally coupled reactor (TCTDR). 184 two-concentric-tubes have been proposed for this configuration. Outer tube sides of the two-concentric-tubes have been considered for the tri-reforming reactions while dry reforming process takes place in inner tube sides. Simulation results of co-current mode have been compared with corresponding predictions of thermally coupled tri- and steam reformer (TCTSR); in which the tri-reforming process has been coupled with steam reforming of methane in same conditions. A mathematical heterogeneous model has been applied to simulate both dry and tri-reforming sides of the TCTDR. Results showed that methane conversion at the output of dry and tri-reforming sides reached to 63% and 93%, respectively. Also, molar flow rate of syngas at the output of DR side of TCTDR reached to 7464 kmol h1 in comparison to 3912 kmol h1 for SR side of TCTSR.