Research Info

Home \Investigation of the ...
Title
Investigation of the Microstructure and Corrosion Behaviors of Composite Hard-Faced Layers on Al5052 Using SiC and TiB2 in 3.5% NaCl and 0.5 M H2SO4 Solutions
Type Article
Keywords
cladding, composite surface, corrosion, electrochemical studies, GTAW, SEM
Abstract
In this study, the effects of SiC and TiB2 reinforcement particles on the corrosion behaviors of the surface composites of an Al5052 substrate produced with a gas tungsten arc welding (GTAW) technique were investigated. The electrochemical behaviors of the base metal (BM) and surface composites were evaluated by open-circuit potential monitoring, potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in two solutions: 0.5 M H2SO4 and 3.5% NaCl. The results of PDP and EIS showed that by adding reinforcement particles on the surface, the corrosion resistance decreased in both environments relative to BM. Among Al5052-based surface composites, the AA5052/SiC + TiB2 composite in 3.5% NaCl solution and AA5052/TiB2 in H2SO4 solution showed the lowest corrosion resistance due to the formation of microgalvanic couples in the Al matrix. The corrosion resistance of Al5052-based surface composites in 3.5% NaCl solution was much better than that in 0.5 M H2SO4. Furthermore, scanning electron microscopy (SEM) analysis confirmed the PDP and EIS results. The SEM image of the corroded surface of AA5052/TiB2 exhibited severe pitting corrosion in both solutions relative to the other composites. In contrast, the AA5052/SiC composite showed a relatively lower corrosion rate in both 3.5% NaCl and 0.5 M H2SO4. Hardness tests provided evidence for improved mechanical properties of the composites in comparison with the BM. In particular, composites containing TiB2 showed the highest hardness, followed by AA5052/SiC + TiB2 composites.
Researchers mehrdad faraji (First researcher) , Saeid Karim (Second researcher) , Mojtaba Esmailzadeh (Third researcher) , Luca Pezzato (Fourth researcher)