Keywords
|
Hollow fiber membranes,Forward osmosis,Double-skinned,Thin-film composite,Water treatment
|
Abstract
|
This study involves the preparation of a double-skinned thin film composite (TFC) and
thin film nanocomposite (TFN) hollow fiber (HF) membrane for forward osmosis (FO) applications.
The porous substrate consisted of a Polyvinyl chloride (PVC) / Polycarbonate
(PC) blend HF membrane. Interfacial polymerization (IP) was then applied to coat a
polyamide (PA) layer on the lumen surface and the porous substrate's outer surface. In
addition, the impact of the outer PA active layer and the addition of nanoparticles to the
outer selective layer on the FO flux and internal concentration polarization (ICP) were
studied. By adding the second active layer to the substrate, water flux, reverse salt flux
and ICP decreased. Also, the decline of water flux decreased over time due to the fouling
agent. To compensate for the decrease in water flux in the double-skinned membrane,
graphene oxide (GO) nanoparticles with 0.05% and 0.1%wt were added to the outer active
layer. Addition of 0.1%wt graphene oxide nanoparticle to the outer active layer can help to
improve water flux about 78% without spoiling the reverse salt flux. Moreover, the performance
of double-skinned membranes against osmotic dilution process for oily wastewater
treatment was investigated. The findings of this study demonstrated that the
novel double-skinned TFN HF membrane exhibited high FO performance with low ICP and
fouling.
|