Research Info

Home \Removal of Pb(II) pollution ...
Title
Removal of Pb(II) pollution by algae-Fe-Ni magnetic nanocomposite
Type Article
Keywords
Alloy;Density functional theory;Heat transfer simulation Magnetic nanocomposite; Persian Gulf
Abstract
A magnetic nanocomposite material was synthesized by combining Chaetomorpha Algae with a Fe–Ni alloy. The dry algae, Fe, and Ni were mechanically alloyed using a ball milling technique in an argon atmosphere. The resulting Algae-Fe-Ni Magnetic Nanocomposite (AFNMN) was characterized using various analytical techniques, including particle size distribution (PSD) analysis, Brunauer-Emmett-Teller (BET) surface area analysis, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), vibrating sample magnetometry (VSM), atomic absorption spectroscopy (AAS), and Fourier transform infrared (FTIR) spectroscopy. Multiple isotherm models were employed to study the adsorption of Pb(II) ions onto the AFNMN material. Density functional theory (DFT) was applied to predict the most stable amino acids for the removal of Pb(II) pollutants from a set of 14 amino acids. To optimize the Pb(II) uptake performance, three key experimental parameters were fine-tuned: pH, temperature, and reactor vessel geometry. Four different optimization methods were utilized, including response surface methodology (RSM), fuzzy logic, adaptive network-based fuzzy inference system (ANFIS), and artificial neural network genetic algorithms (ANN-GA). Additionally, a heat transfer simulation was conducted to determine the optimal vessel positions for achieving the desired temperature variations within the reactor during the adsorption process.
Researchers Saeid Zarei (First researcher) , Hossein Raanaei (Second researcher) , Mohammad Akrami-Abarghooei (Third researcher) , Mahmood Niad (Fourth researcher)