Research Info

Home \Petroleum Emulsion Stability ...
Title
Petroleum Emulsion Stability and Separation Strategies: A Comprehensive Review
Type Article
Keywords
petroleum emulsions, emulsion stability, demulsification, destabilization mechanisms, sustainable oil–water separation
Abstract
Crude oil emulsions continue to pose significant challenges across production, transportation, and refining due to their inherent stability and complex interfacial chemistry. Their persistence is driven by the synergistic effects of asphaltenes, resins, acids, waxes, and fine solids, as well as operational factors such as temperature, pH, shear, and droplet size. These emulsions increase viscosity, accelerate corrosion, hinder catalytic activity, and complicate downstream processing, resulting in substantial operational, economic, and environmental impacts—underscoring the necessity of effective demulsification strategies. This review provides a comprehensive examination of emulsion behavior, beginning with their formation, classification, and stabilization mechanisms and progressing to the fundamental processes governing destabilization, including flocculation, coalescence, Ostwald ripening, creaming, and sedimentation. Separation techniques are critically assessed across chemical, thermal, mechanical, electrical, membrane-based, ultrasonic, and biological domains, with attention to their efficiency, limitations, and suitability for industrial deployment. Particular emphasis is placed on hybrid and emerging methods that integrate multiple mechanisms to improve performance while reducing environmental impact. By uniting fundamental insights with technological innovations, this work highlights current progress and identifies future directions toward greener, more efficient oil–water separation strategies tailored to diverse petroleum operations.
Researchers Soroush Ahmadi (First researcher) , Azizollah Khormali (Second researcher)