Abstract
|
This paper is concerned with nonlinear analysis of frames composed of softening materials. The previously proposed dissipated energy maximization approach is extended to determine non-holonomic
solution of such frames. The adopted assumptions are: linear kinematics, lumped plasticity with softening behavior, piecewise-linear yield functions, associate flow rule and isotropic evolution with a three phase linear softening rule. The approach is based on a mathematical programming formulation. The solution procedure is discussed and presented in a comprehensive flowchart. It is shown that this method has the ability of solving and tracing path dependent problems and detecting any possible bifurcation.
|