Research Info

Home \CRISPRi-mediated knock-down ...
Title
CRISPRi-mediated knock-down of PRDM1/BLIMP1 programs central memory differentiation in ex vivo-expanded human T cells
Type Article
Keywords
T cell, PRDM1, BLIMP1, CRISPR interference, Memory T cell
Abstract
Introduction: B lymphocyte-induced maturation protein 1 (BLIMP1) encoded by the positive regulatory domain 1 gene (PRDM1), is a key regulator in T cell differentiation in mouse models. BLIMP1-deficiency results in a lower effector phenotype and a higher memory phenotype. Methods: In this study, we aimed to determine the role of transcription factor BLIMP1 in human T cell differentiation. Specifically, we investigated the role of BLIMP1 in memory differentiation and exhaustion of human T cells. We used CRISPR interference (CRISPRi) to knock-down BLIMP1 and investigated the differential expressions of T cell memory and exhaustion markers in BLIMP1-deficient T cells in comparison with BLIMP1-sufficient ex vivo expanded human T cells. Results: BLIMP1-deficiency caused an increase in central memory (CM) T cells and a decrease in effector memory (EM) T cells. There was a decrease in the amount of TIM3 exhaustion marker expression in BLIMP1-deficient T cells; however, there was an increase in PD1 exhaustion marker expression in BLIMP1-deficient T cells compared with BLIMP1-sufficient T cells. Conclusion: Our study provides the first functional evidence of the impact of BLIMP1 on the regulation of human T cell memory and exhaustion phenotype. These findings suggest that BLIMP1 may be a promising target to improve the immune response in adoptive T cell therapy settings.
Researchers Mohammad Azadbakht (First researcher) , Ali Sayadmanesh (Second researcher) , Naghmeh NAzer (Third researcher) , Amirhossein Ahmadi (Fourth researcher) , sara Hemmati (Fifth researcher) , Hoda Mohammadzadeh (Not in first six researchers) , Marzieh Ebrahimi (Not in first six researchers) , Hossein Baharvand (Not in first six researchers) , Babak Khalaj (Not in first six researchers) , Mahmoud Reza Aghamaali (Not in first six researchers) , Mohsen Basiri (Not in first six researchers)