Research Info

Home \Wettability Alteration in Gas ...
Title
Wettability Alteration in Gas Condensate Reservoirs: A Critical Review of the Opportunities and Challenges
Type Article
Keywords
Wettability; Wettability Alteration; Gas Condensate; Reservoir
Abstract
The gas condensate reservoir is classified as a natural gas resource that produces condensate liquid in the reservoir when the pressure in the reservoir drops below the dew point. An innovative strategy to address condensate blockage near the wellbore involves modifying the wettability of the surface of the reservoir rock. This is achieved through chemical treatment, transitioning the surface from a state of strong liquid-wetting to either strong or intermediate gas-wetting. This modern approach effectively mitigates condensate blockage and its associated challenges. Adjusting and sustaining wettability conditions within gas reservoirs requires proper chemicals for a certain reservoir condition. The paper presents a thorough review of wettability and the processes involved in wettability alteration specifically in gas condensate reservoirs. Then, the commonly used wettability alteration chemicals along with their induced flow mechanisms are discussed and reviewed together with a molecular modeling point of view on modern problems of wetting and interfacial phenomena. This paper also focuses on using nanoparticles and fluorochemicals as wettability alteration agents, given that fluorinated nanoparticles are allegedly superior to the chemical wettability altering agents as they change the wettability of the rock surface by modifying both surface energy and surface roughness. This Review indicates the promising use of various nanoparticles along with fluoro materials to enhance ultimate hydrocarbon recovery in gas condensate reservoirs. In the next part, molecular dynamic simulation of imbibition of n-alkanes in kerogen organic slits are presented. The influence of competitive adsorption on multicomponent flows of crude oil and wetting transition on surfaces with molecular roughness are discussed. Actual problems and challenges of molecular modeling methods are also presented.
Researchers fatemeh kazemi (First researcher) , Aleksey Khlyupin (Second researcher) , Reza Azin (Third researcher) , Shahriar Osfouri (Fourth researcher) , Arash Khosravi (Fifth researcher) , Mohammad Sedaghat (Not in first six researchers) , Yousef Kazemzadeh (Not in first six researchers) , Kirill M Gerke (Not in first six researchers) , Marina V. Karsanina (Not in first six researchers)