15 آذر 1404
علي رنجبر

علی رنجبر

مرتبه علمی: استادیار
نشانی: دانشکده مهندسی نفت، گاز و پتروشیمی - گروه مهندسی نفت
تحصیلات: دکترای تخصصی / مهندسی نفت
تلفن: 077
دانشکده: دانشکده مهندسی نفت، گاز و پتروشیمی

مشخصات پژوهش

عنوان Machine learning analysis of CO2 and methane adsorption in tight reservoir rocks
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Underground gas storage, CO2, CH4, Gas adsorption, Life cycle assessment, Thermodynamic, parameter analysis, Greenhouse gases
مجله Scientific Reports
شناسه DOI https://doi.org/10.1038/s41598-025-10010-4
پژوهشگران مهدی مالکی (نفر اول) ، محمدرسول دهقانی فیروزآبادی (نفر دوم) ، معین کافی (نفر سوم) ، علی اکبری (نفر چهارم) ، یوسف کاظم زاده (نفر پنجم) ، علی رنجبر (نفر ششم به بعد)

چکیده

Greenhouse gases, particularly CO2 and CH4, are key contributors to climate change and global warming. Consequently, effective management and reduction of these emissions, especially in subsurface storage applications, are crucial. Adsorption presents a promising strategy for mitigating CO2 and CH4 emissions in the energy sector, particularly in the storage and utilization of fossil fuel resources, thereby minimizing the environmental impact of their extraction and consumption. In this study, the adsorption behavior of CO2 and CH4 in tight reservoirs is examined using experimental data and advanced machine learning (ML) techniques. The dataset incorporates key variables such as temperature, pressure, rock type, total organic carbon (TOC), moisture content, and the CO2 fraction in the injected gas. Various ML models were employed to predict gas adsorption capacity, with CatBoost and Extra Trees demonstrating high predictive performance. The CatBoost model achieved superior results, with R² values of 0.9989 for CO₂ and 0.9965 for CH₄, along with low RMSE and MAE values, indicating strong stability and accuracy across all metrics. Sensitivity analysis identified pressure as the most influential factor, followed by TOC and CO2 percentage, while temperature had a restrictive effect on adsorption. Secondary variables, such as rock type and moisture content, also contributed, though to a lesser extent. Graphical analyses further validated the high accuracy of the ML models, particularly CatBoost and Extra Trees. The findings underscore the effectiveness of ML approaches and optimized hyperparameter tuning in enhancing the prediction of gas adsorption capacity, thereby improving the design of gas injection and storage processes. This research provides valuable insights for optimizing gas composition and operational parameters in storage applications, serving as a foundation for future studies in gas sequestration and reservoir engineering.