November 22, 2024
Hossein Shirkani

Hossein Shirkani

Academic Rank: Assistant professor
Address:
Degree: Ph.D in Physics
Phone: 09173755086
Faculty: Faculty of Nano and Biotechnology

Research

Title Design and study of phosphorene nanoribbons as a perfect absorber and polarizer in mid-IR range
Type Article
Keywords
Phosphorene nanoribbons, Perfect absorber, IR range, Surface plasmon resonance, Polarizer
Journal PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES
DOI 10.1016/j.physe.2021.115066
Researchers Hossein Shirkani (First researcher) , Zeynab Sadeghi (Second researcher) , Niloufar Fadaei (Fourth researcher)

Abstract

Two-dimensional materials because of their unique physical and chemical properties made changes in the last two decades. Phosphorene, as a member of the 2D materials family, is a semiconductor material with a bandgap 0.2eV that leads to many applications in field-effect transistors, cathode/anode materials in batteries, energy storage, optical gas sensors, and so on. Due to the optical properties of phosphorene in the IR and THz regime, this paper aims to improve the rate of phosphorene absorption. This absorption uptake by surface plasmon resonance in one-dimensional nanostructures. For this purpose, the optical properties of phosphorene nanoribbons in the IR regime investigate. By using a dielectric substrate and a metal reflecting layer, the localization of SPR on phosphorene increases from 20% to an almost perfect system. In this process, the anisotropic properties of phosphorene increased. This makes the proposed structure a good option for polarizers in the IR region. In addition, the optical properties and materials, as well as geometry, have been studied and optimized. The resulting system is a board-angel absorber that shows little dependence on the reflective layer and dielectric medium. Simulations have been performed using the FEM method in COMSOL Multiphysics software.