Research Info

Home \Biomimetic synthesis and ...
Title
Biomimetic synthesis and characterization of cobalt nanoparticles using apoferritin, and investigation of direct electron transfer of Co(NPs)–ferritin at modified glassy carbon electrode to design a novel nanobiosensor
Type Article
Keywords
Nanoparticles  Biosensor  Direct electron transfer
Abstract
Oxyhydroxy cobalt CoO(OH) nanoparticles (Co-NPs) were prepared in horse spleen apoferritin (HsAFr) cavity. Transmission electron microscopy revealed the par- ticle size was 5.5–6 nm. Mineralization effect on HsAFr was investigated by fluorescence and far-UV circular dichroism (far-UV CD) spectroscopies. The far-UV CD experiments indicated an increase in the a-helical content after mineral- ization. Intrinsic fluorescence data showed that mineraliza- tion acts as a quencher of HsAFr. For the first time, direct electron transfer between Co(NPs)–HsAFr and a glassy carbon electrode in the thin film of dihexadecylphosphate (DHP) was investigated by cyclic voltammetry (CV) to design a biosensor. The anionic surfactant DHP was used to achieve direct electron-transfer between Co(NPs)–HsAFr molecules and the GC electrode surface. CV result showed clearly a pair of well-defined and quasi-reversible redox peaks arise from Co(NPs)–HsAFr embedded in DHP film. This novel biosensor can be used in medical and industrial fields to detect different analytes.
Researchers Soheila Kashanian (First researcher) , Fereshteh Abasi Tarighat (Second researcher) , Ronak Rafipour (Third researcher) , Maryam Abbasi Tarighat (Fourth researcher)