مشخصات پژوهش

خانه /Soft thresholding wavelet ...
عنوان
Soft thresholding wavelet shrinkage estimation for mean matrix of matrix-variate normal distribution: low and high dimensional
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Balanced loss function · Matrix-variate normal distribution · Restricted parameter · Soft wavelet estimator · Stein’s unbiased risk estimate · Threshold
چکیده
One of the most important issues in matrix-variate normal distribution is the mean matrix parameter estimation problem. In this paper, we introduce a new soft-threshold wavelet shrinkage estimator based on Stein’s unbiased risk estimate (SURE) for the matrix-variate normal distribution.We focus on particular thresholding rules to obtain a new SURE threshold and we produce new estimators under balanced loss function. In addition, we obtain the restricted soft-threshold wavelet shrinkage estimator based on non-negative sub matrix of the mean matrix. Also, we obtain the soft-threshold wavelet shrinkage estimator in high dimensional cases. Denoising real data set is one of the challenges in this field. In this regard, we present a simulation study to test the validity of proposed estimator and provide real examples in low and high-dimensional case. After denoising the real data sets, by computing average mean square error, we find that the new estimator dominates other competing estimators.
پژوهشگران حمید کرمی کبیر (نفر اول)، احمد نوید اصغری (نفر دوم)، عبدالعزیز سلیمی (نفر سوم)