مشخصات پژوهش

خانه /Solution of time-space ...
عنوان
Solution of time-space dependent equations as balance transport equations and stability of the numerical method in two layer reactor design of muon catalyzed fusion
نوع پژوهش مقالات در همایش ها
کلیدواژه‌ها
Forced fusion, Two layers of reactor, Time-space dependent, Transport equations, muonic atom, Backward implicit method, Step size, Numerical
چکیده
Forced muon catalyzed fusion in the two layers of reactor, H/T and D2 ( with density \phi0 ), is proposed. After injection of muons into the H/T (localized at x= 0) , start slowing down and are finally captured by the atoms. This means that the muonic atoms are formed, i.e. t\mu (1s) . Due to Ramsauer-Townsend effect, the t\mu muonic atoms leave H/T and enter the second layer. The time-space dependent transport equations are applied and solved for the reactor media by Backward implicit method(BIM). The numerical method of BIM is used to obtain the number densities of N^E_\mu t (x, t) at the resonance collision energies E = 0.47, 1, 1.5eV and, also for the t\mu(1s) mean energy, 2.2eV . The variable x denotes the spacecoordinate measured from the H/T slab. The chemical cofinement formation rates are very high in the resonance energies. In order to obtain a converged solution we needed a large number of discritization points, the step sizes for x and time variables are, respectively, 2000 and 1015 . As more sequence, the balance equation reported at the bounary of the two layers in this conference, corresponds the our numerical results and would be applied for the space interval of 0+
پژوهشگران کوروش قیصری (نفر اول)، فاطمه محمدصالحی (نفر دوم)