مشخصات پژوهش

خانه /On Eccentric Adjacency Index ...
عنوان
On Eccentric Adjacency Index of Graphs and Trees
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Eccentricity, Tree, Eccentric adjacency index (EAI), Perfect matching
چکیده
Let $G=(V(G),E(G))$ be a simple and connected graph. The distance between any two vertices $x$ and $y$, denoted by $d_G(x,y)$, is defined as the length of a shortest path connecting $x$ and $y$ in $G$. The degree of a vertex $x$ in $G$, denoted by $\deg_G(x)$, is defined as the number of vertices in $G$ of distance one from $x$. The eccentric adjacency index (briefly EAI) of a connected graph $G$ is defined as \[\xi^{ad} (G)=\sum_{u\in V(G)}\se_G(u)\varepsilon_G(u)^{-1},\] \noindent where $\se_G(u)=\displaystyle\sum_{\substack{v\in V(G)\\ d_G(u,v)=1}}\deg_{G}(v)$ and $\varepsilon_G(u)=\max \{d_G(u,v)\mid v \in V(G)\}$. In this article, we aim to obtain all extremal graphs based on the value of EAI among all simple and connected graphs, all trees, and all trees with perfect matching.
پژوهشگران رضا شرف دینی (نفر اول)، مهدی آزادی مطلق (نفر دوم)، وحید هاشمی (نفر سوم)، فاطمه پارسانژاد (نفر چهارم)