مشخصات پژوهش

خانه /Design of an adaptive ...
عنوان
Design of an adaptive fuzzy-neural inference system-based control approach for robotic manipulators
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
Adaptive control Fuzzy inference system Neural network PID control Robotic manipulator Error convergence
چکیده
This paper proposes an adaptive fuzzy-neural inference system (ANFIS)-based control approach for a six degrees of freedom (6-DoF) robotic manipulator. Its main objective is to guarantee the error convergence of the controlled system in the presence of uncertainties and unknown disturbances. The suggested controller is a parallel combination of an ANFIS network with a proportional-integral-derivative (PID) controller. The ANFIS system is used as an estimator to approximate a part of the system and then applied as the feedback linearization in the suggested control structure. The convergence of system errors to zero was proven using Barbalat’s lemma. The suggested control law combines the simplicity and ease of implementation of PID control with the estimation properties of ANFIS networks. The suggested approach was evaluated using a simulation study and further validated experimentally using the 6-DoF IRB-120 robotic manipulator (IRB-120-RM). The obtained results confirmed its superior performance and suitability for practical implementation to industrial actuators.
پژوهشگران هادی برحق طلب مجتبی (نفر اول)، محمدرضا عسکری سپستانکی (نفر دوم)، صالح مبین (نفر سوم)، ابوالفضل جلیلوند (نفر چهارم)، عفف فکیه (نفر پنجم)، وحید میگلی (نفر ششم به بعد)