مشخصات پژوهش

خانه /Vertex weighted Laplacian ...
عنوان
Vertex weighted Laplacian graph energy and other topological indices
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
energy of graph, Laplacian energy, vertex weight, topological index, toroidal fullerenes
چکیده
Let $G$ be a graph with a vertex weight $omega$ and the vertices $v_1,ldots,v_n$. The Laplacian matrix of $G$ with respect to $omega$ is defined as $L_omega(G)=diag(omega(v_1),cdots,omega(v_n))-A(G)$, where $A(G)$ is the adjacency matrix of $G$. Let $mu_1,cdots,mu_n$ be eigenvalues of $L_omega(G)$. Then the Laplacian energy of $G$ with respect to $omega$ defined as $LE_omega (G)=sum_{i=1}^nbig|mu_i - overline{omega}big|$, where $overline{omega}$ is the average of $omega$, i.e., $overline{omega}=dfrac{sum_{i=1}^{n}omega(v_i)}{n}$. In this paper we consider several natural vertex weights of $G$ and obtain some inequalities between the ordinary and Laplacian energies of $G$ with corresponding vertex weights. Finally, we apply our results to the molecular graph of toroidal fullerenes (or achiral polyhex nanotorus).
پژوهشگران رضا شرف دینی (نفر اول)، پناهبر حبیبه (نفر دوم)