چکیده
|
In this study, functionally graded polyurethane foams (FGPUFs) were produced using a layer?by?layer casting technique. Discontinuous FGPUFs were fabricated by this method. The scanning electron microscopy was used to study the morphology of all specimens. The mechanical properties of the polyurethane foams (PUFs) were evaluated by compression, indentation force deflection, drop weight tests, and dynamic mechanical thermal analysis. Scanning electron microscopy micrographs taken from different zones of functionally graded material showed the variation of the morphology of cells as well as the suitable interfaces between the layers of PUF. Investigation of mechanical properties suggested that FGPUF specimens have an optimum behavior between other specimens in compression and indentation force deflection tests. The results of drop weight test showed that FGPUF samples behaved like an energy absorber (14.31 KN) in comparison to other PUFs. The results of dynamic mechanical thermal analysis data showed an improvement in glass transition temperature (Tg) to ?47.2°C and stability of modulus of FGPUFs as temperature increases.
Citing Literature
|