مشخصات پژوهش

خانه /Low and high dimensional ...
عنوان
Low and high dimensional wavelet thresholds for matrix-variate normal distribution
نوع پژوهش مقالات در نشریات
کلیدواژه‌ها
High dimensional, Matrix-variate normal distribution, Shrinkage estimator, SURE threshold, Wavelet shrinkage method.
چکیده
The matrix-variate normal distribution is a probability distribution that is a generalization of the multivariate normal distribution to matrix-valued random variables. In this paper, we introduce a wavelet shrinkage estimator based on Stein’s unbiased risk estimate (SURE) threshold for matrix-variate normal distribution. We find a new SURE threshold for soft thresholding wavelet shrinkage estimator under the reflected normal balanced loss function in low and high dimensional cases. Also, we obtain the restricted wavelet shrinkage estimator based on non-negative sub matrix of the mean matrix. Finally, we present a simulation study to test the validity of the wavelet shrinkage estimator and two real examples for low and high dimensional data sets.
پژوهشگران حمید کرمی کبیر (نفر اول)، امیر صنعتی (نفر دوم)، غلامحسین همدانی (نفر سوم)