مشخصات پژوهش

خانه /Deep Learning Automated ...
عنوان
Deep Learning Automated Differential Diagnosis of Pharyngitis using Smartphone Camera
نوع پژوهش مقالات در همایش ها
کلیدواژه‌ها
Bacterial , Nonbacterial , Pharyngitis , Convolutional Neural Network, Vision Transformer
چکیده
In this article, we aimed to diagnose whether patients have bacterial pharyngitis or nonbacterial pharyngitis. To achieve this, a dataset from 579 patients was collected, and at least four general practitioners diagnosed each sample. Data augmentation methods were employed to increase the sample size, and various preprocessing techniques were applied to enhance the quality of images. In this study, we utilized a Convolutional Neural Network (CNN) and two transformers for binary classification. The results show that deep learning classifiy the pharyngitis into bacterial and nonbacterial, based on images taken by smartphone cameras, precisely.
پژوهشگران نگار شجاعی (نفر اول)، علی بهروزی (نفر دوم)، حبیب رستمی (نفر سوم)، امیر صنعتی (نفر چهارم)، مجید علی محمدی (نفر پنجم)، جهانبخش کیوانی (نفر ششم به بعد)
تاریخ انجام 1403-02-05